skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ayres, Edward"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Passive microwave remote sensing of soil moisture is crucial for monitoring the Earth’s water cycle and surface dynamics. The penetration depth during this process is significant, as it influences the accuracy of retrieved soil moisture data. Within L-band remote sensing, tools such as the τ-z model interpret microwave emissions to estimate soil moisture, taking into account the complex interactions between soil and radiation. However, in validating these models against high-temporal-resolution, ground-based measurements, especially from extensive networks like the Terrestrial National Ecological Observatory Network (NEON), further research and validation efforts are needed. This study comprehensively validates the τ-z model’s ability to estimate the soil temperature sensing depth (zTeff) using data from the NEON and Soil Moisture Active Passive (SMAP) satellite missions. A harmonization process was conducted to align the spatial and temporal scales of the two datasets, enabling rigorous validation. We compared soil optical depth (τ)—a parameter capable of theoretically unifying sensing depth representations across wet soil (~0.05 m) to extreme dry/frozen conditions (e.g., up to ~1500 m in ice-equivalent scenarios)—and geometric depth (z) frameworks against outputs from the τ-z model and NEON’s in situ profiles. The results show that: (1) for the profiles that satisfy the monotonic assumption by the τ-z model, zTeff fits the prediction well at about 0.2 τ for the average; (2) Combining SMAP’s soil moisture, the τ-z model achieves high accuracy in estimating zTeff, with RMSD (0.05 m) and unRMSD (0.03 m), and correlations (0.67) between estimated and observed values. The findings are expected to advance remote sensing techniques in various fields, including agriculture, hydrology, and climate change research. 
    more » « less
  2. Abstract Throughfall is the dominant input of water to most terrestrial ecosystems and is primarily driven by precipitation quantity, although the relationship varies among sites. A wide range of meteorological and site‐based properties also influence throughfall and may explain this variability, but their importance for accurately predicting throughfall quantities across differing sites remains unknown. Here I develop models to predict daily throughfall quantities at ∼1 m2resolution based on up to 19 environmental parameters using multi‐year data from sites throughout the US. Three random forest models of varying complexity were trained to predict throughfall: a simple model (RF‐1) driven solely by precipitation quantity, and more complex models that incorporated an additional eight (RF‐9) and eighteen (RF‐19) variables. RF‐1 was able to predict throughfall quantities (±28%) and accuracy was modestly improved by including additional model parameters (±24–26%). Improvements in model performance were most apparent for smaller precipitation events (<10 mm), which are less likely to fully saturate the canopy (22% improvement in prediction accuracy for the RF‐19 model). Precipitation quantity, maximum intensity, and duration were consistently identified as the most important drivers of throughfall, whereas variables relating to evaporative potential and canopy water storage capacity were identified as moderately important. These models allow the impacts of environmental changes (e.g., forest regrowth after clearcutting or increased precipitation intensity) to be evaluated, as well as inform decisions about which parameters to include in field‐ and model‐based studies of throughfall and its converse, interception, when resources are limited. 
    more » « less
  3. ABSTRACT Belowground eukaryotic diversity serves a vital role in soil ecosystem functioning, yet the composition, structure, and macroecology of these communities are significantly under‐characterized. The National Ecological Observatory Network (NEON) provides publicly available datasets from long‐term surveillance of numerous taxa and ecosystem properties. However, this dataset is not routinely evaluated for its eukaryotic component, likely because analyzing metagenomes for eukaryotic sequences is hampered by low relative sequence abundance, large genomes, poorer eukaryote representation in public reference databases, and is not yet mainstream. We mined the NEON soil metagenome datasets for 18S rRNA sequences using a custom‐built pipeline and produced a preliminary assessment of biodiversity trends in North American soil eukaryotes. We extracted ~800 18S rRNA reads per sample (~22,000 reads per site) from 1455 samples from 495 plots across 45 NEON sites in 11 biomes, which corresponded to 5183 genera in 35 phyla. To our knowledge, this represents the first large‐scale soil eukaryote analysis of NEON data. We asked whether taxonomic richness paralleled patterns previously established ecological trends and found that eukaryotic richness was negatively correlated with pH, managed sites lowered eukaryotic richness by 47%, most biomes had a distinct eukaryotic community, and fire decreased eukaryotic richness. These findings parallel generally accepted ecological trends and support the notion that NEON soil metagenome datasets can and should be used to explore spatiotemporal patterns in soil eukaryote diversity, its association with ecosystem functioning, and its response to environmental changes in North America. 
    more » « less
  4. Acquires and synthesizes soil carbon fluxes at sites located in the National Ecological Observatory Network (NEON). Provides flux estimates and associated uncertainty as well as key environmental measurements (soil water, temperature, CO2 concentration) that are used to compute soil fluxes. 
    more » « less
  5. Abstract Accurate quantification of soil carbon fluxes is essential to reduce uncertainty in estimates of the terrestrial carbon sink. However, these fluxes vary over time and across ecosystem types and so, it can be difficult to estimate them accurately across large scales. The flux‐gradient method estimates soil carbon fluxes using co‐located measurements of soil CO2concentration, soil temperature, soil moisture and other soil properties. The National Ecological Observatory Network (NEON) provides such data across 20 ecoclimatic domains spanning the continental U.S., Puerto Rico, Alaska and Hawai‘i.We present an R software package (neonSoilFlux) that acquires soil environmental data to compute half‐hourly soil carbon fluxes for each soil replicate plot at a given terrestrial NEON site. To assess the computed fluxes, we visited six focal NEON sites and measured soil carbon fluxes using a closed‐dynamic chamber approach.Outputs from theneonSoilFluxshowed agreement with measured fluxes (R2between measured andneonSoilFluxoutputs ranging from 0.12 to 0.77 depending on calculation method used); measured outputs generally fell within the range of calculated uncertainties from the gradient method. Calculated fluxes fromneonSoilFluxaggregated to the daily scale exhibited expected site‐specific seasonal patterns.While the flux‐gradient method is broadly effective, its accuracy is highly sensitive to site‐specific inputs, including the extent to which gap‐filing techniques are used to interpolate missing sensor data and to estimates of soil diffusivity and moisture content. Future refinement and validation ofneonSoilFluxoutputs can contribute to existing databases of soil carbon flux measurements, providing near real‐time estimates of a critical component of the terrestrial carbon cycle. 
    more » « less
  6. Abstract The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges. 
    more » « less
  7. Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change. 
    more » « less